This paper firstly presents an asynchronous analog to digital technique that is well suited for an in-pixel implementation
in an X-ray or Infra-Red image sensor. The principle which consists in counting charge packets coming from the detector
is also called "charge-balancing technique". Simulation and experimental results on a 0.13μm process test-chip are given
and a 16 bit dynamic range is reached. Secondly a new enhancement method is described. This method controls the LSB
of the A/D conversion as the input current (from the detector) varies, so that a floating point coding is carried out. The
consequences are a wider dynamic range (19 bits at least) as well as a reduction of the technological fluctuations
between two different pixels. On this work in progress, implementation in a 150x150μm2 pixel is briefly commented.
Proceedings Volume Editor (4)
This will count as one of your downloads.
You will have access to both the presentation and article (if available).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.