Current innovations in optical imaging, measurement techniques, and data analysis algorithms express the need for reliable testing and comparison methods. We present the design and characterization of silicone elastomer-based optical phantoms. Absorption is included by adding a green dye and scattering by adding TiO2 or SiO2 particles. Optical coherence tomography measurements demonstrate a linear dependence of the attenuation coefficient with scatterer concentration in the absence of absorbers. Optical transmission spectroscopy of the nonscattering absorbing phantoms shows a linear concentration dependent absorption coefficient. Both types of samples are stable over a period of 6 months. Confocal microscopy of the samples demonstrates a homogeneous distribution of the scatterers, albeit with some clustering. Based on layers with thicknesses as small as 50 µm, we make multifaceted structures resembling flow channels, (wavy) skin-like structures, and a layered and curved phantom resembling the human retina. Finally, we demonstrate the ability to incorporate gold nanoparticles within the phantoms. In conclusion, our phantoms are easy to make, are based on affordable materials, exhibit well-defined and controllable thickness, refractive index, absorption, and scattering coefficients, are homogeneous, and allow the incorporation of novel types of nanoparticle contrast agents. We believe our phantoms fulfill many of the requirements for an "ideal" tissue phantom, and will be particularly suited for novel optical coherence tomography applications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.