Our group is investigating the use of ZnS-capped CdSe quantum dot (QD) bioconjugates combined with fluorescence
endoscopy for improved early cancer detection in the esophagus, colon and lung. A major challenge in using fluorescent
contrast agents in vivo is to extract the relevant signal from the tissue autofluorescence (AF). Our studies are aimed at
maximizing the QD signal to AF background ratio (SBR) to facilitate detection. This work quantitatively evaluates the
effect of the excitation wavelength on the SBR, using both experimental measurements and mathematical modeling.
Experimental SBR measurements were done by imaging QD solutions placed onto (surface) or embedded in (sub-surface)
ex vivo murine tissue samples (brain, kidney, liver, lung), using a polymethylmethacrylate (PMMA)
microchannel phantom. The results suggest that the maximum contrast is reached when the excitation wavelength is set
at 400±20 &mgr;m for the surface configuration. For the sub-surface configuration, the optimal excitation wavelength varies
with the tissue type and QD emission wavelengths. Our mathematical model, based on an approximation to the
diffusion equation, successfully predicts the optimal excitation wavelength for the surface configuration, but needs
further modifications to be accurate in the sub-surface configuration.
Biocompatible ZnS capped CdSe fluorescent semiconductor nanocrystals (quantum dots, QDs) exhibit great potential as imaging agents with biomedical and clinical relevance. However, little is known about the fate of the quantum dots in vivo, and the importance of chemical and physical composition that may influence their behavior in vivo. When the QDs are introduced in vivo, the first interactions with blood components will dictate their kinetic behavior in vivo. We present some preliminary results that demonstrate the interactions of the quantum dots with plasma proteins and that quantum dots can be trapped in fibrous networks.
The interface of targeting molecules that can recognize and identify specific biomolecules with highly luminescent semiconductor nanocrystals or quantum dots can lead to a novel and powerful new class of probes for studying biomolecules in real-time or for imaging and detecting diseases. We describe the rationale design of optical nanoprobes by using fluorescent semiconductor quantum dots with targeting molecules (TMs)-identified using phage display screening. Quantum dots are nanometer-sized particles with unique and tunable optical properties. They offer numerous optical advantages over traditional organic fluorophores in biological analysis and detection (e.g., photostability, continuous absorption profile).
Proceedings Volume Editor (1)
This will count as one of your downloads.
You will have access to both the presentation and article (if available).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.