MegaMapper is a 6.5m Magellan-like telescope fitted with a wide-field-corrector (WFC) and atmospheric-dispersion-corrector (ADC) that delivers a 3° diameter corrected field-of-view. The telescope’s focal surface is populated by ∼25,000 robotic fiber-positioners feeding a cluster of 36 DESI-like medium resolution spectrographs. We present the facility concept for MegaMapper including: conceptual optical and opto-mechanical designs for the telescope and WFC/ADC that deliver ≲ 0.4” image quality over the full FOV for zenith distances ≤ 50°; the development of a new and modular robotic fiber-positioner focal plane design that can populate the focal surface at high densities (6.2 mm pitch or ∼1 per arcmin2); and concepts for hosting the MegaMapper spectrograph cluster under environmentally controlled conditions inside the telescope enclosure. Building on existing and proven designs and technologies, MegaMapper aims to minimize the project’s technical risk and cost while delivering a competitive next-generation massively multiplexed spectroscopic facility. MegaMapper will lead the study of inflation, dark energy, dark matter, and time-domain astronomy over the next decades by carrying out wide-field cosmological galaxy-redshift surveys, massive spectroscopic surveys of stars in the Milky Way halo and satellites, and by providing a spectroscopic follow-up counterpart to wide field imaging facilities like the Vera C. Rubin Observatory and the Nancy Grace Roman space telescope.
The Dark Energy Spectroscopic Instrument (DESI) is a Stage IV ground-based dark energy experiment that will measure the expansion history of the Universe using the Baryon Acoustic Oscillation technique. The spectra of 35 million galaxies and quasars over 14000 square degrees will be measured during the life of the experiment. We describe the installation of the major elements of the instrument at the Mayall 4m telescope, completed in late 2019. The previous prime focus corrector, spider vanes, and upper rings were removed from the Mayall’s Serrurier truss and replaced with the newlyconstructed DESI ring, vanes, cage, hexapod, and optical corrector. The new corrector was optically aligned with the primary mirror using a laser tracker system. The DESI focal plane system was integrated to the corrector, with each of its ten 500-fiber-positioner petal segments installed using custom installation hardware and the laser tracker. Ten DESI spectrographs with 30 cryostats were installed in a newly assembled clean room in the Large Coude Room. The ten cables carrying 5000 optical fibers from the positioners in the focal plane were routed down the telescope through cable wraps at the declination and hour angle axes, and their integral slitheads were integrated with the ten spectrographs. The fiber view camera assembly was installed to the Mayall’s primary mirror cell. Servers for the instrument control system replaced existing computer equipment. The fully integrated instrument has been commissioned and is ready to start its operations phase.
The recently commissioned Dark Energy Spectroscopic Instrument (DESI) will measure the expansion history of the Universe using the Baryon Acoustic Oscillation technique. The spectra of 35 million galaxies and quasars over 14000 sq deg will be measured during the life of the experiment. A new prime focus corrector for the KPNO Mayall telescope delivers light to 5000 fiber optic positioners. The fibers in turn feed ten broad-band spectrographs. We describe the use of a Faro Laser Tracker with custom hardware and software tools for alignment during integration of DESI’s focal plane. The focal plane is approximately one meter in diameter and consists primarily of ten radially symmetrical focal plane segments (“petals”) which were individually installed into the telescope. The nominal clearance between petals is 600 microns, and an alignment accuracy of 100 microns and 0.01 degrees was targeted. Alignment of the petals to their targeted locations on the telescope was accomplished by adjusting a purpose-built alignment structure with 14 degrees of freedom using feedback from the laser tracker, which measured the locations of retroreflectors attached to both the petal and the telescope and whose positions relative to key features were precisely known. These measurements were used to infer the locations of aligning features in both structures, which were in turn used to calculate the adjustments necessary to bring the system into alignment. Once alignment was achieved to within acceptable tolerances, each petal was installed while monitoring building movement due to wind and thermal variations.
An imaging spectrometer for observations of the Martian corona and the Martian thermosphere is presented. The corona extends over 10 Martian radii and its measurement requires observations over a very wide field. The spectrometer covers the wavelength region 120-170 nm where this band includes coronal spectral lines of hydrogen Lyman alpha and oxygen, and thermospheric spectral lines from atomic oxygen and carbon and the 4th positive band of CO. Stellar occultation observations will provide atmospheric density measurements. These scientific requirements are fulfilled by an Offner-type spectrometer with a 110 degree instantaneous field of view and no moving mechanisms. Both the spectral and imaging resolution vary across the field, from higher resolution across the planet body, to lower resolution required at the diffuse outer parts of the corona. This Offner-type design has not been previously used in the FUV.
The Focusing Optics X-ray Solar Imager (FOXSI) is, in its initial form, a sounding rocket experiment designed to apply the technique of focusing hard X-ray (HXR) optics to the study of fundamental questions about the high-energy Sun. Solar HXRs arise via bremsstrahlung from energetic electrons and hot plasma produced in solar flares and thus are one of the most direct diagnostics of are-accelerated electrons and the impulsive heating of the solar corona. Previous missions have always been limited in sensitivity and dynamic range by the use of indirect (Fourier) imaging due to the lack of availability of direct focusing optics, but technological advances now make direct focusing accessible in the HXR regime (as evidenced by the NuSTAR spacecraft and several suborbital missions). The FOXSI rocket experiment develops and optimizes HXR focusing telescopes for the unique scientific requirements of the Sun. To date, FOXSI has completed two successful flights on 2012 November 02 and 2014 December 11 and is funded for a third flight. This paper gives a brief overview of the experiment, which is sensitive to solar HXRs in the 4-20 keV range, describes its first two flights, and gives a preview of plans for FOXSI-3.
High-resolution broadband spectroscopy at near-infrared wavelengths (950 to 2450 nm) has been performed using externally dispersed interferometry (EDI) at the Hale telescope at Mt. Palomar. Observations of stars were performed with the “TEDI” interferometer mounted within the central hole of the 200-in. primary mirror in series with the comounted TripleSpec near-infrared echelle spectrograph. These are the first multidelay EDI demonstrations on starlight, as earlier measurements used a single delay or laboratory sources. We demonstrate very high (10×) resolution boost, from original 2700 to 27,000 with current set of delays (up to 3 cm), well beyond the classical limits enforced by the slit width and detector pixel Nyquist limit. Significantly, the EDI used with multiple delays rather than a single delay as used previously yields an order of magnitude or more improvement in the stability against native spectrograph point spread function (PSF) drifts along the dispersion direction. We observe a dramatic (20×) reduction in sensitivity to PSF shift using our standard processing. A recently realized method of further reducing the PSF shift sensitivity to zero is described theoretically and demonstrated in a simple simulation which produces a 350× times reduction. We demonstrate superb rejection of fixed pattern noise due to bad detector pixels—EDI only responds to changes in pixel intensity synchronous to applied dithering. This part 1 describes data analysis, results, and instrument noise. A section on theoretical photon limited sensitivity is in a companion paper, part 2.
High resolution broad-band spectroscopy at near-infrared wavelengths has been performed using externally dis- persed interferometry (EDI) at the Hale telescope at Mt. Palomar. The EDI technique uses a field-widened Michelson interferometer in series with a dispersive spectrograph, and is able to recover a spectrum with a resolution 4 to 10 times higher than the existing grating spectrograph. This method increases the resolution well beyond the classical limits enforced by the slit width and the detector pixel Nyquist limit and, in principle, decreases the effect of pupil variation on the instrument line-shape function. The EDI technique permits arbi- trarily higher resolution measurements using the higher throughput, lower weight, size, and expense of a lower resolution spectrograph. Observations of many stars were performed with the TEDI interferometer mounted within the central hole of the 200 inch primary mirror. Light from the interferometer was then dispersed by the
TripleSpec near-infrared echelle spectrograph. Continuous spectra between 950 and 2450 nm with a resolution
as high as ~27,000 were recovered from data taken with TripleSpec at a native resolution of ∼2,700. Aspects
of data analysis for interferometric spectral reconstruction are described. This technique has applications in im- proving measurements of high-resolution stellar template spectra, critical for precision Doppler velocimetry using conventional spectroscopic methods. A new interferometer to be applied for this purpose at visible wavelengths is under construction.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.