Nanolasers with ultra-compact footprint are able to provide high intensity coherent light, which have various potential applications in high capacity signal processing, biosensing, and sub-wavelength imaging. Among various nanolasers, those lasers with cavities surrounded with metals have shown to have superior light emission properties due to the surface plasmon effect providing better field confinement capability and allowing exotic light-matter interaction. In this talk, we report robust ultraviolet ZnO nanolaser by using silver (Ag) [1] and aluminum (Al) [2] to strongly shrink the mode volume. The nanolasers operated at room temperature and even high temperature (353K) shows several distinct features including an extremely small mode volume, large Purcell factor and group index. Comparison of characteristics between Ag- and Al-based will also be made.
We have analyzed a hybrid photonic-plasmonic crystal nanocavity consisting of a silicon grating nanowire adjacent to a metal surface with a gain gap between. The hybrid plasmonic cavity modes are highly confined in the gap due to the coupling of photonic crystal cavity modes and surface plasmonic gap modes. Using the finite-element method, we numerically solve guided modes of the hybrid plasmonic waveguide at a wavelength of 1.55 μm. The modal characteristics such as waveguide confinement factors and modal losses of the fundamental hybrid plasmonic modes are explored as a function of the groove depth at various gap heights. After that, we show the band structure of the hybrid crystal modes, corresponding to a wide band gap of 17.8 THz. To effectively trap the optical modes, we introduce a single defect into the hybrid crystal. At a deep sub-wavelength defect length as small as 180 nm, the resonant mode exhibits a high quality factor of 566.5 and an ultrasmall mode volume of 0.00186 (λ/n) 3 at the resonance wavelength of 1.55 μm. In comparison to the conventional photonic crystal nanowire cavity in the absence of metal surface, the figure of merit Q/Vm is enormously enhanced around 15 times. The proposed nanocavities open up the opportunities for various applications with strong light-matter interaction such as nanolasers and biosensors.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.