Filters for Extreme Ultra-Violet (EUV) lithography chemicals, like chemically amplified photoresist (CAR), are attractive because of their capabilities to remove aggregated species and reduce microbridges in high volume manufacturing. Unlike bulk filters used in high-flow circulation mode, point-of-use (POU) filter is used in single-pass mode, so the retention performance and cleanliness become the most critical factors. Earlier presentations have demonstrated the benefit of reducing on-wafer defectivities through filtration of EUV photoresists with the state-of-the-art HDPE membranes filters, Pall® sub-1nm HDPE (XPR3L). In this study, we present a novel HDPE filter specifically designed to provide high retention performance, which is mainly enabled by an improvement in retention characteristics of membrane and cleanliness in finished POU filters. The membrane was designed to have a finer pore size and better pore geometry to improve defect retention. To expedite the filter start-up process, optimized device cleaning process was applied to further improve initial cleanliness, which was indicated by GC-MS, LC-MS/MS and ICP-MS measurements, etc. Finally, the POU filters were evaluated at imec EUV cluster consisting of TEL CleanTrack™ LITHIUS Pro™-Z and ASML NXE:3400B, and comparative defect data was obtained from patterned wafers with 16nm L/S.
As the semiconductor industry continues to advance and on-wafer defect reduction by liquid filtration has become “universal” as a process enabler for advanced technology nodes, the need for innovative filtration solutions that reduces target contaminants has become critical.
Filtration technologies for metal cleanliness in photochemicals, including lithography materials and solvents, continue to grow and contribute to die yield improvement at wafer level. Both point-of-use (POU) and bulk filtration play important roles in achieving high-purity chemicals and processes by eliminating metal contaminants in critical fluids. However, the increasing complexity of photochemicals, such as multicomponent resist formulations (organic or inorganic), necessitates advanced filtration membrane technology that is compatible with their various components, including the metal oxide nanoparticles.
In this regard, the ideal filtration technology should rely on functionalization with tailored chemistries to selectively remove target metals, without interactions with the key components in photoresist formulations. Also, due to the variation in forms and species of metals in different fluids, the next generation filtration technology should be able to act as a versatile platform with customization capability to optimize removal efficiency in each fluid.
The objective of this study is to demonstrate the metal removal performance of different functionalization chemistries on PTFE and HDPE membrane and investigate the impact of various surface modification designs on removal selectivity and efficiency.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.