The study of resonant dielectric nanostructures with a high refractive index is a new research direction in the nanoscale optics and metamaterial-inspired nanophotonics. Because of the unique optically induced electric and magnetic Mie resonances, high-index nanoscale structures are expected to complement or even replace different plasmonic components in a range of potential applications. We study a strong coupling between modes of a single subwavelength high-index dielectric resonator and analyze the mode transformation and Fano resonances when the resonator’s aspect ratio varies. We demonstrate that strong mode coupling results in resonances with high-quality factors, which are related to the physics of bound states in the continuum when the radiative losses are almost suppressed due to the Friedrich–Wintgen scenario of destructive interference. We explain the physics of these states in terms of multipole decomposition, and show that their appearance is accompanied by a drastic change in the far-field radiation pattern. We reveal a fundamental link between the formation of the high-quality resonances and peculiarities of the Fano parameter in the scattering cross-section spectra. Our theoretical findings are confirmed by microwave experiments for the scattering of high-index cylindrical resonators with a tunable aspect ratio. The proposed mechanism of the strong mode coupling in single subwavelength high-index resonators accompanied by resonances with high-quality factors helps to extend substantially functionalities of all-dielectric nanophotonics, which opens horizons for active and passive nanoscale metadevices.
Here we report theoretical and experimental results for a high-Q cavity based on nanoimprinted perovskite film. We reveal that bound state in the continuum transformed into a resonant state due to leakage into substrate leads to significant enhancement of the photoluminescence signal of the perovskite cavity.
Recently, a novel class of high-Q optical resonators based on all-dielectric subwavelength nanoparticles with high refractive index has been proposed [M. V. Rybin, et al, arXiv:1706.02099, 2017]. Here we study a complex spectrum of such nanoscale resonators by means of the resonant-state expansion, treating the problem as a nonHermitian eigenproblem. We show that the high-Q features can be described within the mechanism of external coupling of open channels via the continuum. For ceramic resonators with permittivity ε = 40, we demonstrate that the quality factor of a trapped mode with a low azimuthal index could reach the value Q = 104 .
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.