Fringe Projection Profilometry (FPP) faces challenges with objects of varying surface reflectivity, as projected light can exceed the camera’s dynamic range, hindering effective fringe capture. Current solutions using repeated projections with varying exposures increase measurement time, limiting real-time applicability. This study validates deep neural networks that transform traditional multi-frequency, multi-step, multi-exposure methods into a single-step, multi-exposure format, significantly reducing measurement time while maintaining accuracy. Experimental results demonstrate that deep learning methods can effectively extract phase information from modulated fringe images, unwrap it, and reconstruct 3D point clouds. On high-reflectivity metal datasets, the accuracy of the deep learning approach closely matches that of the traditional six-step method, while using only 16.7% of the time. For standard objects, the accuracy reaches up to 60 microns. These findings confirm that various deep learning methods can efficiently resolve phase information in modulated fringe patterns, significantly enhancing measurement speed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.