The non-destructive readout capability of the Skipper Charge Coupled Device (CCD) has been demonstrated to reduce the noise limitation of conventional silicon devices to levels that allow single-photon or single-electron counting. The noise reduction is achieved by taking multiple measurements of the charge in each pixel. These multiple measurements come at the cost of extra readout time, which has been a limitation for the broader adoption of this technology in particle physics, quantum imaging, and astronomy applications. This work presents recent results of a novel sensor architecture that uses multiple non-destructive floating-gate amplifiers in series to achieve sub-electron readout noise in a thick, fully-depleted silicon detector to overcome the readout time overhead of the Skipper-CCD. This sensor is called the Multiple-Amplifier Sensing Charge-Coupled Device (MAS-CCD) can perform multiple independent charge measurements with each amplifier, and the measurements from multiple amplifiers can be combined to further reduce the readout noise. We will show results obtained for sensors with 8 and 16 amplifiers per readout stage in new readout operations modes to optimize its readout speed. The noise reduction capability of the new techniques will be demonstrated in terms of its ability to reduce the noise by combining the information from the different amplifiers, and to resolve signals in the order of a single photon per pixel. The first readout operation explored here avoids the extra readout time needed in the MAS-CCD to read a line of the sensor associated with the extra extent of the serial register. The second technique explore the capability of the MAS-CCD device to perform a region of interest readout increasing the number of multiple samples per amplifier in a targeted region of the active area of the device.
Detectors with sub-electron noise open new possibilities for the spectroscopy of Earth-like exoplanets, probing the faintest signatures of dark energy and dark matter with high-redshift galaxies, and observing fast-evolving transients. Multi-amplifier sensing (MAS) charge-coupled devices (CCDs) offer the capability to achieve ultra-low readout noise floors together with a readout rate comparable to current CCDs employed in observatories. This is achieved by distributing a chain of Skipper floating-gate amplifiers along the serial register, allowing charge to be read repeatedly, non-destructively, and independently. We show recent progress in optimizing the MAS CCD for use in astronomy. These include reducing noise to sub-electron levels with faster read times than Skipper CCDs, optical characterization results, and a discussion of the range of astronomical science cases and facilities that would be enabled by MAS CCDs.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.