In this paper, the foundations of radiometry and photometry, based on Second Principle of Thermodynamics are
discussed, in terms of brightness (luminance), and etendue (Lagrange invariant) limitations of integrated lighting
systems. In such a case, the brightness is defined as phase-space-density, and other radiometric/photometric quantities
such as emittance, exitance, or irradiance/illuminance, power/flux, and radiant/luminant intensity, are also discussed,
including examples of integrated lighting systems. Also, technologic progress at Luminit is reviewed, including 3D-microreplication
of new non-diffuser microscopic structures by roll-to-roll web technology.
In this paper, integrated lighting is discussed, including light sources, rough or relief surfaces such as diffusers and microprisms, as well as theoretical limits of ray tracing and photometry, and performance metrics of integrated lighting systems.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.