The SCALES instrument being developed at UC Observatories is designed to take spectra of directly imaged exoplanets in the thermal infrared (1-5 microns). The ability to switch from science imaging mode to pupil imaging mode to taking spectra at specific wavelengths requires precision mechanical subsystems to enable these different modes of operation at cryogenic temperatures. In this paper we discuss the design of a rotary stage that can position different Lyot masks, as well as different high precision metal optics to enable some of the broad functionality of SCALES. We will also review some of the analysis involved with validating the design, and specifics pertaining to the design of the precision mirrors mounted to this stage.
Since the start of science operations in 1993, the twin 10-meter W. M. Keck Observatory (WMKO) telescopes have continued to maximize their scientific impact to produce transformative discoveries that keep the U.S. observing community on the frontiers of astronomical research. Upgraded capabilities and new instrumentation are provided though collaborative partnerships primarily with the Caltech and University of California instrument development teams and through additional collaborations with the University of Notre Dame, the University of Hawaii, Swinburne University of Technology, industry, and other organizations. This paper summarizes the status and performance of observatory infrastructure projects, technology upgrades, and new additions to the suite of observatory instrumentation. We also provide a status of instrumentation projects in early and advanced stages of development that will achieve the goals and objectives summarized in the 2023 Keck Observatory strategic plan. Developed in collaboration with the WMKO science community, the Keck strategic plan sets our sites on 2035 and meets goals identified in the Astro2020 Decadal Survey.
The upcoming SCALES instrument for W.M. Keck Observatory will enable coronagraphic imaging and low-/mid-resolution IFS observations over 2-5 micron wavelengths, using two separate HgCdTe Teledyne Imaging H2RG detectors. These detectors are wired for slow-mode readout at a pixel clock rate of ~100kHz, but when operated with a Teledyne Imaging SIDECAR ASIC followed by an AstroBlank/Markury Scientific MACIE controller card, the system can be operated at faster clock rates up to 30MHz, a mode referred to as hybrid fast-slow readout. We perform room-temperature laboratory tests of detector readout to demonstrate feasibility of hybrid readout using a MUX in place of the H2RG, before proceeding into room-temperature and cold tests with the H2RG detector. We test and optimize full-frame data acquisition with pixel clock rates from 5-30 MHz. We discuss the next steps in detector system testing and verification.
We present preliminary laboratory cryogenic testing and validation results for the first rotary stage for SCALES (Slicer Combined with an Array of Lenslets for Exoplanet Spectroscopy). SCALES is a 2-5 micron high-contrast lenslet integral field spectrograph currently undergoing final design and testing for the W. M. Keck Observatory. The rotary stage, known as the Lyot mechanism, is a rotating wheel with 15 selectable pupil masks and optics. When deployed behind the Keck Adaptive Optics system, SCALES will be used to detect and characterize a wide variety of exoplanets. To minimize thermal emission, all optical and mechanical components of SCALES are fully cryogenic. Testing was first performed at ambient temperatures and pressures, then validated under vacuum at cryogenic temperatures.
The Keck Planet Finder (KPF) is a fiber-fed, high-resolution, echelle spectrometer that specializes in the discovery and characterization of exoplanets using Doppler spectroscopy. In designing KPF, the guiding principles were high throughput to promote survey speed and access to faint targets, and high stability to keep uncalibrated systematic Doppler measurement errors below 30 cm s−1. KPF achieves optical illumination stability with a tip-tilt injection system, octagonal cross-section optical fibers, a double scrambler, and active fiber agitation. The optical bench and optics with integral mounts are made of Zerodur to provide thermo-mechanical stability. The spectrometer includes a slicer to reformat the optical input, green and red channels (445–600 nm and 600–870 nm), and achieves a resolving power of ∼97,000. Additional subsystems include a separate, medium-resolution UV spectrometer (383–402 nm) to record the Ca II H & K lines, an exposure meter for real-time flux monitoring, a solar feed for sunlight injection, and a calibration system with a laser frequency comb and etalon for wavelength calibration. KPF was installed and commissioned at the W. M. Keck Observatory in late 2022 and early 2023 and is now in regular use for scientific observations. This paper presents an overview of the as-built KPF instrument and its subsystems, design considerations, and initial on-sky performance.
SCALES (Slicer Combined with Array of Lenslets for Exoplanet Spectroscopy) is the next-generation, diffraction-limited, thermal infrared, fully cryogenic, coronagraphic exoplanet spectrograph and imager for W.M. Keck Observatory. SCALES is fed by the Keck II Adaptive Optics bench. Both modes use common fore-optics to simplify the optical design and have individual detectors, which are JWST flight spares. The imager mode operates from 1 to 5 microns with selectable narrow- and broadband filters over a field of view 12.3 arcseconds on a side, and the integral field spectrograph mode operates from 2 to 5 microns with both low and mid spectral resolutions (R∼ 100 to R∼ 7500) over a field of view 2.15 arcseconds on a side. The diamond-turned aluminum optics, most of which are already delivered, with the rest being fabricated, provide low distortion, low wavefront error, and high throughput for all modes. The slicing unit, located behind the lenslet array, allows SCALES to reach heretofore unheard-of spatially-resolved spectral resolution for exoplanet and disc observations from the ground with a coronagraphic integral field spectrograph. The SCALES consortium includes UC Observatories, CalTech, W.M. Keck Observatory, the Indian Institute of Astrophysics, and the University of Durham, with over 40 science team members. We report on the overall design and project status during its ongoing fabrication phase, which started in early 2023.
We present the design of SCALES (Slicer Combined with Array of Lenslets for Exoplanet Spectroscopy) a new 2-5 micron coronagraphic integral field spectrograph under construction for Keck Observatory. SCALES enables low-resolution (R∼50) spectroscopy, as well as medium-resolution (R∼4,000) spectroscopy with the goal of discovering and characterizing cold exoplanets that are brightest in the thermal infrared. Additionally, SCALES has a 12x12” field-of-view imager that will be used for general adaptive optics science at Keck. We present SCALES’s specifications, its science case, its overall design, and simulations of its expected performance. Additionally, we present progress on procuring, fabricating and testing long lead-time components.
Since the start of science operations in 1993, the twin 10-meter W. M. Keck Observatory (WMKO) telescopes have continued to maximize their scientific impact and to produce transformative discoveries that keep the observing community on the frontiers of astronomical research. Upgraded capabilities and new instrumentation are provided though collaborative partnerships with Caltech, the University of California, and the University of Hawaii instrument development teams, as well as industry and other organizations. This paper summarizes the performance of recently commissioned infrastructure projects, technology upgrades, and new additions to the suite of observatory instrumentation. We also provide a status of projects currently in design or development phases and, since we keep our eye on the future, summarize projects in exploratory phases that originate from our 2022 strategic plan developed in collaboration with our science community to adapt and respond to evolving science needs.
Since the start of science operations in 1993, the twin 10-meter W. M. Keck Observatory (WMKO) telescopes have continued to maximize their scientific impact and to produce transformative discoveries that keep the observing community on the frontiers of astronomical research. Upgraded capabilities and new instrumentation are provided though collaborative partnerships with Caltech, the University of California, and the University of Hawaii instrument development teams, as well as industry and other organizations. This paper summarizes the performance of recently commissioned infrastructure projects, technology upgrades, and new additions to the suite of observatory instrumentation. We also provide a status of projects currently in design or development phases and, since we keep our eye on the future, summarize projects in exploratory phases that originate from our 2022 strategic plan developed in collaboration with our science community to adapt and respond to evolving science needs.
KEYWORDS: Integrating spheres, Observatories, Telescopes, Signal to noise ratio, Galactic astronomy, Solar system, Analog electronics, Spectrographs, Planets, Exoplanets
Exoplanets are abundant in our galaxy and yet characterizing them remains a technical challenge. Solar System planets provide an opportunity to test the practical limitations of exoplanet observations with high signal-to-noise data that we cannot access for exoplanets. However, data on Solar System planets differ from exoplanets in that Solar System planets are spatially resolved while exoplanets are unresolved point-sources. We present a novel instrument designed to observe Solar System planets as though they are exoplanets, the Planet as Exoplanet Analog Spectrograph (PEAS). PEAS consists of a dedicated 0.5-m telescope and off-the-shelf optics, located at Lick Observatory. PEAS uses an integrating sphere to disk-integrate light from the Solar System planets, producing spatially mixed light more similar to the spectra we can obtain from exoplanets. This paper describes the general system design and early results of the PEAS instrument.
The Keck Planet Finder (KPF) is a fiber-fed, high-resolution, high-stability spectrometer in development at the UC Berkeley Space Sciences Laboratory for the W.M. Keck Observatory. KPF is designed to characterize exoplanets via Doppler spectroscopy with a goal of a single measurement precision of 0.3 m s-1 or better, however its resolution and stability will enable a wide variety of astrophysical pursuits. Here we provide post-preliminary design review design updates for several subsystems, including: the main spectrometer, the fabrication of the Zerodur optical bench; the data reduction pipeline; fiber agitator; fiber cable design; fiber scrambler; VPH testing results and the exposure meter.
The new deployable tertiary mirror for the Keck I telescope (K1DM3) at the W. M. Keck Observatory has been assembled, tested and shipped to the telescope site, and is currently being installed. The mirror is capable of reflecting the beam to one of six positions around the telescope elevation ring or to retract out of the way to allow the use of Cassegrain instruments. This new functionality is intended to allow rapid instrument changes for transient event observations and improve telescope operations. This paper presents the final as-built design. Additionally, this paper presents detailed information about our alignment approach in the attempt to duplicate the instrument pointing orientation of the existing M3.
The Keck Planet Finder (KPF) is a fiber-fed, high-resolution, high-stability spectrometer in development for the W.M. Keck Observatory. The instrument recently passed its preliminary design review and is currently in the detailed design phase. KPF is designed to characterize exoplanets using Doppler spectroscopy with a single measurement precision of 0.5 m s−1 or better; however, its resolution and stability will enable a wide variety of other astrophysical pursuits. KPF will have a 200 mm collimated beam diameter and a resolving power greater than 80,000. The design includes a green channel (445 nm to 600 nm) and red channel (600 nm to 870 nm). A novel design aspect of KPF is the use of a Zerodur optical bench, and Zerodur optics with integral mounts, to provide stability against thermal expansion and contraction effects.
KEYWORDS: Mirrors, Telescopes, Astronomy, Calibration, Sensors, Distortion, Data modeling, Spectroscopy, James Webb Space Telescope, Magnetic resonance imaging
Motivated by the ever increasing pursuit of science with the transient sky (dubbed Time Domain Astronomy or TDA), we are fabricating and will commission a new deployable tertiary mirror for the Keck I telescope (K1DM3) at the W.M. Keck Observatory. This paper presents the detailed design of K1DM3 with emphasis on the opto- mechanics. This project has presented several design challenges. Foremost are the competing requirements to avoid vignetting the light path when retracted against a sufficiently rigid system for high-precision and repeatable pointing. The design utilizes an actuated swing arm to retract the mirror or deploy it into a kinematic coupling. The K1DM3 project has also required the design and development of custom connections to provide power, communications, and compressed air to the system. This NSF-MRI funded project is planned to be commissioned in Spring 2017.
We describe the design and first-light early science performance of the Shane Adaptive optics infraRed Camera- Spectrograph (ShARCS) on Lick Observatory’s 3-m Shane telescope. Designed to work with the new ShaneAO adaptive optics system, ShARCS is capable of high-efficiency, diffraction-limited imaging and low-dispersion grism spectroscopy in J, H, and K-bands. ShARCS uses a HAWAII-2RG infrared detector, giving high quantum efficiency (<80%) and Nyquist sampling the diffraction limit in all three wavelength bands. The ShARCS instrument is also equipped for linear polarimetry and is sensitive down to 650 nm to support future visible-light adaptive optics capability. We report on the early science data taken during commissioning.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.