We present a comprehensive overview of the collaborative efforts between the End-to-End (E2E) Simulator and the Data Reduction Software (DRS) team, focusing on the modeling of the U-band efficient Cassegrain spectrograph CUBES (ESO-VLT). The E2E model is a Python-based numerical simulator capable of rendering synthetic raw frames with high precision for both astronomical and calibration sources, starting from their 1-d radiation spectra up to the data produced by the detectors. Data from the E2E are processed by the prototype Data Reduction Software (pDRS), a Python library which implements the critical algorithms of the DRS. The PDRS performs wavelength calibration and extracts a 1-d spectrum from one or more reduced science exposures. The 1-d spectrum produced by the extraction routine is meant to be compared directly with the input spectrum fed to the E2E, actually “closing the loop” allowing for a real end-to-end assessment of the instrument capabilities.
We present our numerical simulation approach for the End-to-End (E2E) model applied to various astronomical spectrographs, such as SOXS (ESO-NTT), CUBES (ESO-VLT), and ANDES (ESO-ELT), covering multiple wavelength regions. The E2E model aim at simulating the expected astronomical observations starting from the radiation of the scientific sources (or calibration sources) up to the raw-frame data produced by the detectors. The comprehensive description includes E2E architecture, computational models, and tools for rendering the simulated frames. Collaboration with Data Reduction Software (DRS) teams is discussed, along with efforts to meet instrument requirements. The contribution to the cross-correlation algorithm for the Active Flexure Compensation (AFC) system of CUBES is detailed.
In this paper, we present an overview of the software architecture for the ArmazoNes high Dispersion Echelle Spectrograph (ANDES) spectrograph, which has been developed as part of the recent System Architecture Review (SAR) held in October 2023. Our focus in this paper is twofold: we will detail about the control software and science tools that are set to be implemented. In particular, we provide a detailed view on how the ELT Instrument Control Framework has been effectively deployed to manage the complexities of a distributed instrument like ANDES. This entails a comprehensive discussion of the key architectural decisions we have made to meet the requirements of the project. Furthermore, we offer insights into the suite of science software that will be an integral part of the ANDES instrument. This includes the Exposure Time Calculator, Observation Preparation tools, and the Data Reduction Library. Finally, we provide an overview of the Data Analysis Software and the End-to-End ANDES simulator. These tools are crucial for processing and analyzing the data collected by the ANDES spectrograph.
The first generation of ELT instruments includes an optical-infrared high resolution spectrograph, indicated as ELT-HIRES and recently christened ANDES (ArmazoNes high Dispersion Echelle Spectrograph). ANDES consists of three fibre-fed spectrographs ([U]BV, RIZ, YJH) providing a spectral resolution of ∼100,000 with a minimum simultaneous wavelength coverage of 0.4-1.8 μm with the goal of extending it to 0.35-2.4 μm with the addition of an U arm to the BV spectrograph and a separate K band spectrograph. It operates both in seeing- and diffraction-limited conditions and the fibre-feeding allows several, interchangeable observing modes including a single conjugated adaptive optics module and a small diffraction-limited integral field unit in the NIR. Modularity and fibre-feeding allows ANDES to be placed partly on the ELT Nasmyth platform and partly in the Coudé room. ANDES has a wide range of groundbreaking science cases spanning nearly all areas of research in astrophysics and even fundamental physics. Among the top science cases there are the detection of biosignatures from exoplanet atmospheres, finding the fingerprints of the first generation of stars, tests on the stability of Nature’s fundamental couplings, and the direct detection of the cosmic acceleration. The ANDES project is carried forward by a large international consortium, composed of 35 Institutes from 13 countries, forming a team of almost 300 scientists and engineers which include the majority of the scientific and technical expertise in the field that can be found in ESO member states.
In the era of Extremely Large Telescopes, the current generation of 8-10m facilities are likely to remain competitive at ground-UV wavelengths for the foreseeable future. The Cassegrain U-Band Efficient Spectrograph (CUBES) has been designed to provide high instrumental efficiency ( > 37%) observations in the near UV (305-400 nm requirement, 300-420 nm goal) at a spectral resolving power of R > 20, 000 (with a lower-resolution, sky-limited mode of R ∼ 7, 000). With the design focusing on maximizing the instrument throughput (ensuring a Signal to Noise Ratio – SNR– ∼ 20 per spectral resolution element at 313 nm for U ∼ 17.5 mag objects in 1h of observations), it will offer new possibilities in many fields of astrophysics: i) access to key lines of stellar spectra (e.g. lighter elements, in particular Beryllium), extragalactic studies (e.g. circumgalactic medium of distant galaxies, cosmic UV background) and follow-up of explosive transients. We present the CUBES instrument design, currently in Phase-C and approaching the final design review, summarizing the hardware architecture and interfaces between the different subsystems as well as the relevant technical requirements. We describe the optical, mechanical, electrical design of the different subsystems (from the telescope adapter and support structure, through the main opto-mechanical path, including calibration unit, detector devices and cryostat control, main control electronics), detailing peculiar instrument functions like the Active Flexure Compensation (AFC). Furthermore, we outline the AIT/V concept and the main instrument operations giving an overview of its software ecosystem. Installation at the VLT is planned for 2028/2029 and first science operations in late 2029.
KEYWORDS: Signal to noise ratio, Sensors, Device simulation, Calibration, Telescopes, Spectrographs, Software development, Ecosystems, Standards development, Control systems
CUBES (Cassegrain U-Band Efficient Spectrograph) is the recently approved high-efficiency VLT spectrograph aimed to observe the sky in the UV ground-based region (305-400 nm) with a high-resolution mode (∼ 20K) and a low-resolution mode (∼ 5K). In this paper we will briefly describe the requirements and the design of the several software packages involved in the project, namely the instrument control software, the exposure time calculator, the end-to-end simulator, and the data reduction software suite. We will discuss how the above mentioned blocks cooperate to build up a “software ecosystem” for the CUBES instrument, and to support the users from the proposal preparation to the science-grade data products.
The first generation of ELT instruments includes an optical-infrared high resolution spectrograph, indicated as ELT-HIRES and recently christened ANDES (ArmazoNes high Dispersion Echelle Spectrograph). ANDES consists of three fibre-fed spectrographs (UBV, RIZ, YJH) providing a spectral resolution of ∼100,000 with a minimum simultaneous wavelength coverage of 0.4-1.8 µm with the goal of extending it to 0.35-2.4 µm with the addition of a K band spectrograph. It operates both in seeing- and diffraction-limited conditions and the fibre-feeding allows several, interchangeable observing modes including a single conjugated adaptive optics module and a small diffraction-limited integral field unit in the NIR. Its modularity will ensure that ANDES can be placed entirely on the ELT Nasmyth platform, if enough mass and volume is available, or partly in the Coudé room. ANDES has a wide range of groundbreaking science cases spanning nearly all areas of research in astrophysics and even fundamental physics. Among the top science cases there are the detection of biosignatures from exoplanet atmospheres, finding the fingerprints of the first generation of stars, tests on the stability of Nature’s fundamental couplings, and the direct detection of the cosmic acceleration. The ANDES project is carried forward by a large international consortium, composed of 35 Institutes from 13 countries, forming a team of more than 200 scientists and engineers which represent the majority of the scientific and technical expertise in the field among ESO member states.
KEYWORDS: Spectrographs, Stars, Chemical elements, Ultraviolet radiation, Telescopes, Galactic astronomy, Sensors, Astronomy, Signal to noise ratio, Near ultraviolet
In the era of Extremely Large Telescopes, the current generation of 8-10m facilities are likely to remain competitive at ground-UV wavelengths for the foreseeable future. The Cassegrain U-Band Efficient Spectrograph (CUBES) has been designed to provide high-efficiency (> 40%) observations in the near UV (305-400 nm requirement, 300-420 nm goal) at a spectral resolving power of R >20, 000 (with a lower-resolution, sky-limited mode of R ~7, 000). With the design focusing on maximizing the instrument throughput (ensuring a Signal to Noise Ratio (SNR) ~20 per high-resolution element at 313 nm for U ~18.5 mag objects in 1h of observations), it will offer new possibilities in many fields of astrophysics, providing access to key lines of stellar spectra: a tremendous diversity of iron-peak and heavy elements, lighter elements (in particular Beryllium) and light-element molecules (CO, CN, OH), as well as Balmer lines and the Balmer jump (particularly important for young stellar objects). The UV range is also critical in extragalactic studies: the circumgalactic medium of distant galaxies, the contribution of different types of sources to the cosmic UV background, the measurement of H2 and primordial Deuterium in a regime of relatively transparent intergalactic medium, and follow-up of explosive transients. The CUBES project completed a Phase A conceptual design in June 2021 and has now entered the detailed design and construction phase. First science operations are planned for 2028.
Astrocook is a software environment to analyze quasar spectra in a variety of ways. It aims to break the static pipeline paradigm by enforcing a new flexible approach to data treatment, in which complex automatic workflows are dynamically created from a wide set of atomic operations (hence the tagline: “a thousand recipes to cook a spectrum”). We will focus both on the novel algorithms that have been implemented and on the scientific validation and reproducibility of the results. To highlight the benefits of the Astrocook approach for both interactive and automatic analysis, two specific use cases are discussed (one of which was used in practice to process observational data from the QUBRICS survey).
HIRES is the high-resolution spectrograph of the European Extremely Large Telescope at optical and near-infrared wavelengths. It consists of three fibre-fed spectrographs providing a wavelength coverage of 0.4-1.8 µm (goal 0.35-2.4 µm) at a spectral resolution of 100,000. The fibre-feeding allows HIRES to have several, interchangeable observing modes including a SCAO module and a small diffraction-limited IFU in the NIR. Therefore, it will be able to operate both in seeing- and diffraction-limited modes. Its modularity will ensure that HIRES can be placed entirely on the Nasmyth platform, if enough mass and volume is available, or part on the Nasmyth and part in the Coud`e room. ELT-HIRES has a wide range of science cases spanning nearly all areas of research in astrophysics and even fundamental physics. Among the top science cases there are the detection of biosignatures from exoplanet atmospheres, finding the fingerprints of the first generation of stars (PopIII), tests on the stability of Nature’s fundamental couplings, and the direct detection of the cosmic acceleration. The HIRES consortium is composed of more than 30 institutes from 14 countries, forming a team of more than 200 scientists and engineers.
ESPRESSO, the next generation ESO VLT high-resolution ultra-stable spectrograph, after the successful Preliminary Acceptance Europe held at the integration site of the Observatory of Geneva, has been re-integrated at Paranal and started its commissioning activities at the end of 2017. One critical aspect for ESPRESSO future operations, compared with other instruments currently running at ESO, is the way it will be operated which poses several constraints on its data flow. ESPRESSO has been conceived and developed as a “truly science-grade products generating machine” thanks to its fixed format and long-term stability. In addition to the Data Reduction Software (DRS), a Data Analysis Software (DAS), developed within the standard ESO Data Flow System, will be provided to the users – a novelty for the instruments at Paranal. Moreover, ESPRESSO will be fed either by the light of any of the UTs or by the incoherently combined light of up to four UTs, a feature which required a re-thinking of the current Paranal data handling injection schema. In this paper, after describing the main challenges and peculiarities of the ESPRESSO data flow system listed above, we will present the results of the first commissioning activities and the lessons learned to handle data produced by an instrument with such ambitious scientific requirements.
We present the results from the phase A study of ELT-HIRES, an optical-infrared High Resolution Spectrograph for ELT, which has just been completed by a consortium of 30 institutes from 12 countries forming a team of about 200 scientists and engineers. The top science cases of ELT-HIRES will be the detection of life signatures from exoplanet atmospheres, tests on the stability of Nature’s fundamental couplings, the direct detection of the cosmic acceleration. However, the science requirements of these science cases enable many other groundbreaking science cases. The baseline design, which allows to fulfil the top science cases, consists in a modular fiber- fed cross-dispersed echelle spectrograph with two ultra-stable spectral arms providing a simultaneous spectral range of 0.4-1.8 μm at a spectral resolution of ~100,000. The fiber-feeding allows ELT-HIRES to have several, interchangeable observing modes including a SCAO module and a small diffraction-limited IFU.
High resolution spectroscopy has been considered of a primary importance to exploit the main scientific cases foreseen for ESO ELT, the Extremely Large Telescope, the future largest optical-infrared telescope in the world. In this context ESO commissioned a Phase-A feasibility study for the construction of a high resolution spectrograph for the ELT, tentatively named HIRES. The study, which lasted 1.5 years, started on March 2016 and was completed with a review phase held at Garching ESO headquarters with the aim to assess the scientific and technical feasibility of the proposed instrument. One of the main tasks of the study is the architectural design of the software covering all the aspects relevant to control an astronomical instrument: from observation preparation through instrument hardware and detectors control till data reduction and analysis. In this paper we present the outcome of the Phase-A study for the proposed HIRES software design highlighting its peculiarities, critical areas and performance aspects for the whole data flow. The End-toEnd simulator, a tool already capable of simulating HIRES end products and currently being used to drive some design decision, is also shortly described.
Astrocook is a new Python package to analyze the spectra of quasi-stellar objects (QSOs) from the near-UV band to the near-infrared band. The project stems from the lessons learned in developing the data analysis software for the VLT ESPRESSO spectrograph. The idea is to leverage numerical libraries like SciPy, NumPy, and Lmfit and astronomical libraries like Astropy to produce a collection of high-level recipes capable of interpreting the features observed in QSO spectra (such as the emission continuum and the absorption systems) in an automated and validated way. The package provides great flexibility in designing the operational workflow, as well as a set of interactive tools to apply the recipes in a seamless way. The aim is to achieve the combination of accuracy, stability, and repeatability of the procedure that is required by several compelling science cases in the era of ”precision cosmology” (e.g. the measurement of a possible variability in the value of fundamental constants, and the direct measurement of the accelerated expansion of the Universe).
The current E-ELT instrumentation plan foresees a High Resolution Spectrograph conventionally indicated as EELTHIRES whose Phase A study has started in March 2016. Since 2013 however, a preliminary study of a modular E-ELT instrument able to provide high-resolution spectroscopy (R~100,000) in a wide wavelength range (0.37-2.5 μm) has been already conducted by an international consortium (termed “HIRES initiative”). Taking into account the requirements inferred from this preliminary work in terms of both high-level operations as well as low-level control, we will present in this paper possible solutions for HIRES hardware and software architecture. The validity of the proposed architectural and hardware choices will be eventually discussed based also on the experience gained on a real-working instrument, ESPRESSO, the next generation high-stability spectrograph for the VLT and to certain extent the precursor of HIRES.
The Echelle SPectrograph for Rocky Exoplanets and Stable Spectral Observations (ESPRESSO) is an ultrastable spectrograph for the coudé-combined focus of the VLT. With its unprecedented capabilities (resolution up to fi 200,000, wavelength range from 380 to 780 nm; centimeter-per-second precision in wavelength calibration), ESPRESSO is a prime example of the now spreading science machine concept: a fully-integrated system carefully designed to perform direct scientific measurements on the data, in a matter of minutes from the execution of the observations. This approach is motivated by the very specific science cases of the instrument (search for terrestrial exoplanets with the radial velocity method; measure of the variation of fundamental constants using the spectral signatures of the inter-galactic medium) and is achieved by a dedicated tool for spectral analysis, the data analysis software or DAS, targeted to both stellar and quasar spectra. In this paper, we describe characteristics and performances of the DAS, with particular emphasis on the novel algorithms for stellar and quasar analysis (continuum fitting and interpretation of the absorption features).
The current E-ELT instrumentation plan foresees a High Resolution Spectrograph conventionally indicated as HIRES whose Phase A study has started in 2016. An international consortium (stemmed from the existing "HIRES initiative") is conducting a preliminary study of a modular E-ELT instrument able to provide highresolution spectroscopy (R ~ 100; 000) in a wide wavelength range (0.37-2.5 μm). For the aims of data treatment (which encompasses both the reduction and the analysis procedures) an end-to-end approach has been adopted, to directly extract scientific information from the observations with a coherent set of interactive, properly validated software modules. This approach is favoured by the specific science objectives of the instrument, which pose unprecedented requirements in terms of measurement precision and accuracy. In this paper we present the architecture envisioned for the HIRES science software, building on the lessons learned in the development of the data analysis software for the ESPRESSO ultra-stable spectrograph for the VLT.
The Echelle SPectrograph for Rocky Exoplanets and Stable Spectral Observations (ESPRESSO) is an extremely stable high-resolution spectrograph currently under construction, to be placed at Paranal Observatory in the ESO VLT Combined Coudé Laboratory (CCL). With its groundbreaking characteristics (resolution up to ∼200,000; wavelength range from 380 to 780 nm; centimeter-per-second precision in wavelength calibration) and its very specific science cases (search for terrestrial exoplanets with the radial velocity method; measure of the variation of fundamental constants through observations of QSO spectra), ESPRESSO is aimed to be a real "science machine", an instrument whose data flow subsystems are designed in a fully-integrated way to directly extract scientific results from observations. To this purpose, an end-to-end operations scheme will be properly tackled through tailored observation strategy, observation preparation, data reduction and data analysis tools. The software design has successfully passed the ESO final design review in May 2013 and it is now in development phase. In this paper we present the final design for the ESPRESSO data flow system (DFS) with some insights into the new concepts and algorithms that will be introduced for observation strategy/preparation and data reduction/analysis. Eventually, peculiarities and challenges needed to adapt the ESPRESSO DFS in the pre-existing ESO/VLT DFS framework are outlined.
ESPRESSO is the next generation ground based European exoplanets hunter. It will combine the efficiency of modern
echelle spectrograph with extreme radial-velocity and spectroscopic precision. It will be installed at Paranal's VLT in
order to achieve two magnitudes gain with respect to its predecessor HARPS, and the instrumental radial-velocity
precision will be improved to reach 10 cm/s level. We have constituted a Consortium of astronomical research institutes
to fund, design and build ESPRESSO on behalf of and in collaboration with ESO, the European Southern Observatory.
The spectrograph will be installed at the Combined Coudé Laboratory (CCL) of the VLT, it will be linked to the four 8.2
meters Unit Telescopes through four optical "Coudé trains" and will be operated either with a single telescope or with up
to four UTs, enabling an additional 1.5 magnitude gain. Thanks to its characteristics and ability of combining
incoherently the light of 4 large telescopes, ESPRESSO will offer new possibilities in many fields of astronomy. Our
main scientific objectives are, however, the search and characterization of rocky exoplanets in the habitable zone of
quiet, near-by G to M-dwarfs, and the analysis of the variability of fundamental physical constants. The project is, for
most of its workpackages, in the procurement or development phases, and the CCL infrastructure is presently under
adaptation work. In this paper, we present the scientific objectives, the capabilities of ESPRESSO, the technical solutions
for the system and its subsystems. The project aspects of this facility are also described, from the consortium and
partnership structure to the planning phases and milestones.
ESPRESSO is the next European exoplanets hunter. It will combine the efficiency of modern echelle spectrograph with extreme radial-velocity precision. It will be installed at Paranal's VLT in order to achieve two magnitudes gain with respect to its predecessor HARPS, and the instrumental radial-velocity precision will be improved to reach 10 cm/s level. We have constituted a Consortium of astronomical research institutes to fund, design and build ESPRESSO on behalf of and in collaboration with ESO, the European Southern Observatory. The project has passed the final design review in May 2013. The spectrograph will be installed at the Combined Coudé Laboratory of the VLT, it will be linked to the four 8.2 meters Unit Telescopes through four optical "Coudé trains" and will be operated either with a single telescope or with up to four UTs, enabling an additional 1.5 magnitude gain. Thanks to its characteristics and ability of combining incoherently the light of 4 large telescopes, ESPRESSO will offer new possibilities in many fields of astronomy. Our main scientific objectives are, however, the search and characterization of rocky exoplanets in the habitable zone of quiet, near-by G to M-dwarfs, and the analysis of the variability of fundamental physical constants. In this paper, we will present the scientific objectives, the capabilities of ESPRESSO, the technical solutions for the system and its subsystems, enlightening the main differences between ESPRESSO and its predecessors. The project aspects of this facility are also described, from the consortium and partnership structure to the planning phases and milestones.
ESPRESSO, the VLT rocky exoplanets hunter, will combine the efficiency of modern echelle spectrograph with extreme
radial-velocity precision. It will be installed at Paranal on ESO's VLT in order to achieve a gain of two magnitudes with
respect to its predecessor HARPS, and the instrumental radial-velocity precision will be improved to reach 10 cm/s level.
We have constituted a Consortium of astronomical research institutes to fund, design and build ESPRESSO on behalf of
and in collaboration with ESO, the European Southern Observatory. The project has passed the preliminary design
review in November 2011. The spectrograph will be installed at the so-called "Combined Coudé Laboratory" of the
VLT, it will be linked to the four 8.2 meters Unit Telescopes (UT) through four optical "Coudé trains" and will be
operated either with a single telescope or with up to four UTs. In exchange of the major financial and human effort the
building Consortium will be awarded with guaranteed observing time (GTO), which will be invested in a common
scientific program. Thanks to its characteristics and the ability of combining incoherently the light of 4 large telescopes,
ESPRESSO will offer new possibilities in many fields of astronomy. Our main scientific objectives are, however, the search and characterization of rocky exoplanets in the habitable zone of quiet, near-by G to M-dwarfs, and the analysis
of the variability of fundamental physical constants. In this paper, we present the ambitious scientific objectives, the
capabilities of ESPRESSO, the technical solutions for the system and its subsystems, enlightening the main differences
between ESPRESSO and its predecessors. The project aspects of this facility are also described, from the consortium and
partnership structure to the planning phases and milestones.
Since the beginning of the ESPRESSO (Echelle SPectrograph for Rocky Exoplanets and Stable Spectroscopic
Observations) project, it has been recognized that the expected challenging scientific results can be achieved only if an
integrated view of the end-to-end operations is properly tackled. Hunting for rocky exoplanets and/or studying the
possible variations of physical constants requires not only a dedicated, state-of-the-art spectrograph in terms of hardware
and optics, but also a tailored observation strategy, data reduction pipeline and data analysis tools (ESPRESSO will be
the first ESO instrument for which a customized Data Analysis Software will be provided to the community by the
Consortium). In this paper we present the planned data flow system (DFS) for ESPRESSO as emerged after the
Preliminary Design Review held in November 2011. Main requirements in terms of observation strategy/preparation and
data reduction/analysis are analyzed and the corresponding foreseen (conceptual) design, able to fulfill them, discussed.
Eventually, peculiarities and challenges needed to adapt ESPRESSO DFS in the pre-existing ESO/VLT DFS framework
are outlined.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.