The first generation of ELT instruments includes an optical-infrared high resolution spectrograph, indicated as ELT-HIRES and recently christened ANDES (ArmazoNes high Dispersion Echelle Spectrograph). ANDES consists of three fibre-fed spectrographs ([U]BV, RIZ, YJH) providing a spectral resolution of ∼100,000 with a minimum simultaneous wavelength coverage of 0.4-1.8 μm with the goal of extending it to 0.35-2.4 μm with the addition of an U arm to the BV spectrograph and a separate K band spectrograph. It operates both in seeing- and diffraction-limited conditions and the fibre-feeding allows several, interchangeable observing modes including a single conjugated adaptive optics module and a small diffraction-limited integral field unit in the NIR. Modularity and fibre-feeding allows ANDES to be placed partly on the ELT Nasmyth platform and partly in the Coudé room. ANDES has a wide range of groundbreaking science cases spanning nearly all areas of research in astrophysics and even fundamental physics. Among the top science cases there are the detection of biosignatures from exoplanet atmospheres, finding the fingerprints of the first generation of stars, tests on the stability of Nature’s fundamental couplings, and the direct detection of the cosmic acceleration. The ANDES project is carried forward by a large international consortium, composed of 35 Institutes from 13 countries, forming a team of almost 300 scientists and engineers which include the majority of the scientific and technical expertise in the field that can be found in ESO member states.
There are currently important challenges imposed by stellar “noise” often associated with the discovery and characterization of exoplanets similar to Earth. In particular, various physical processes occurring on the stellar photosphere modify stellar spectra, severely challenging the detection and characterization of low-mass planets. A detailed study of the Sun can be used as a spectral proxy to a better understanding of the variable noise sources present in solar-type stars. By obtaining full integrations of the solar disk ("sun-as-a-star observations") in combination with high resolution, spatially resolved observations of smaller areas, the acquired spectra will help in the identification of individual stellar features responsible for the observed spectral deformations. The Instituto de Astrofísica e Ciências do Espaço (Portugal) is currently developing an instrument to approach this challenge. In conjunction with the high-resolution spectrograph ESPRESSO (spectral resolutions of R ~140 000 and ~190 000, HR and UHR modes, respectively), the Paranal solar ESPRESSO Telescope (PoET) will have two dedicated telescopes to map the Sun’s surface through disk-resolved and disk-integrated measurements, with respective telescope diameters of 600 and 75 millimeters. PoET has the requirement to perform disk-resolved observations from 1 to 60 arcseconds in conjunction with the full disk. In this work, a summary of the current configuration of the system – PoET’s telescopes and their frontends – will be given, as well as the preliminary assumptions made to build PoET, with consideration for the light requirements of the ESPRESSO spectrograph.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.