In this paper we demonstrate the development and optimization of an 800 nm-thick Plasma-enhanced chemical vapor deposition (PECVD) silicon nitride (SiN) photonic platform on a 300-mm silicon wafer. The implementation of ArF immersion lithography contributes to superior manufacturing processes, as it provides excellent critical dimension (CD) uniformity inter- and intra-wafers, make it an optimal platform of production of integrated circuits and nanoscale devices.
Various types of qubits have been proposed and demonstrated for quantum information processing. Amongst the candidates, the trapped ion platform is a forerunner for high-fidelity gates and long coherence times of the qubits. Currently, the most advanced scalable ion trap architecture is based on microfabricated ion trap electrodes integrated with photonic circuits to deliver the laser light of different wavelengths performing the tasks of qubit initialization, gate operations and state determination. These operations require low-loss photonic components for a spectrum of wavelengths to address the trapped ion qubit. Moreover, based on the ion species, the wavelengths also differ. Thus, it requires a whole range of designs to accommodate different wavelengths from infra-red to ultra-violet. A low-loss waveguide is typically constructed using silicon nitride (SiN) as core with silicon oxide (SiO2) as the cladding material. During fabrication, some of the processes may degrade the surface quality of the waveguide core resulting in higher propagation loss. In this study, the relation between the waveguide propagation loss and to morphology of the waveguide core surface is investigated. The effect on waveguide propagation loss from the bottom oxide and SiN by chemical mechanical polishing (CMP) is compared to SiN dry etching. Both plasma-enhanced (PE) and low-pressure (LP) chemical vapor deposited (CVD) SiN on 12” Si wafers are used during evaluation. In the case of a well-designed waveguide, it is found that a reduction of the sidewall roughness by as much as 15% translates to a 20% improvement in the propagation loss at 1.6 μm. On the contrary, when the waveguide core’s top and bottom surfaces are polished by CMP, the roughness improves by a factor of 1.75 and 18 for oxide and nitride surfaces respectively. This process however reduces the propagation loss by about 7 times at 1.6 μm wavelength. Furthermore, other improvements in processing techniques enable the fabrication of LPCVD SiN waveguides with propagation loss of 0.56 dB/cm at 685nm wavelength. The optimization of foundry processes for the fabrication of SiN waveguides will significantly contribute towards the efficient and high-fidelity gates in in integrated ion trap. It will also improve the performance of the photonic integrated circuits for quantum technology applications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.