Exploratory prototype DfM tools, methodologies and emerging physical process models are described. The examples
include new platforms for collaboration on process/device/circuits, visualization and quantification of manufacturing
effects at the mask layout level, and advances toward fast-CAD models for lithography, CMP, etch and photomasks. The
examples have evolved from research supported over the last several years by DARPA, SRC, Industry and the Sate of
California U.C. Discovery Program. DfM tools must enable complexity management with very fast first-cut accurate
models across process, device and circuit performance with new modes of collaboration. Collaborations can be promoted
by supporting simultaneous views in naturally intuitive parameters for each contributor. An important theme is to shift
the view point of the statistical variation in timing and power upstream from gate level CD distributions to a more
deterministic set of sources of variations in characterized processes. Many of these nonidealities of manufacturing can be
expressed at the mask plane in terms of lateral impact functions to capture effects not included in design rules. Pattern
Matching and Perturbation Formulations are shown to be well suited for quantifying these sources of variation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.