The ultrahigh laser intensities enabled by high power lasers facilitate the generation of high energy ions using accelerating gradients many million times that of conventional accelerators. The maturation of these sources relies on breakthroughs in the generated beam parameters and improved reproducibility and repetition rate. We used two independent state-of-the-art femtosecond laser systems capable of repetitive operation to accelerate protons and carbons to high energies (>50 MeV and 30 MeV/nucleon respectively) in the relativistically induced transparency (RIT) regime. We demonstrate that acceleration is optimised for different laser prepulse levels by varying the initial target thickness, relaxing laser requirements for energetic ion generation. We elucidated the acceleration dynamics with cutting-edge 3D simulation, showing a) the role of the laser prepulse in pre-expanding the target, and b) radiation pressure assisted electron expulsion from the target during relativistically induced transparency, generating a strong space charge field which rapidly accelerates ions. Our demonstration of a robust acceleration mechanism that does not require complicated targetry nor a single-shot prepulse suppressing plasma mirror is an important step forward for developing high repetition rate applications of laser driven ion sources.
Florian-Emanuel Brack, Florian Kroll, Elke Beyreuther, Stephan Kraft, Josefine Metzkes-Ng, Jörg Pawelke, Marvin Reimold, Ulrich Schramm, Marvin Elias Paul Umlandt, Tim Ziegler, Karl Zeil
KEYWORDS: Tumors, In vivo imaging, Laser irradiation, Animal model studies, Tumor growth modeling, Reliability, Mouse models, Laser radiation, High power lasers, Dosimetry
Recent oncological studies identified beneficial properties of radiation applied at ultra-high dose rates several orders of magnitude higher than the clinical standard of ~1 Gy/min. At the high-power laser source Draco, operated at Helmholtz-Zentrum Dresden-Rossendorf, a complete laser-driven proton research platform for diverse user-specific small animal models was demonstrated. Tunable single-shot doses up to around 20 Gy to millimeter-scale volumes on nanosecond time scales, equivalent to instantaneous dose rates of around 10^9 Gy/s. Spatially homogenized dose distributions tailored to the sample can be delivered with polychromatic proton beams of energies greater than 60 MeV, which have been provided with unprecedented stability and long-term reliability.
These achievements allowed to successfully conduct the first radiobiological in vivo study using a laser-driven proton source. The pilot irradiation study was performed on human tumors in a mouse model, showing the concerted preparation of mice and laser accelerator, the dose-controlled, tumor-conform irradiation using a laser-driven as well as a clinical reference proton source, and the radiobiological evaluation of irradiated and unirradiated mice for radiation-induced tumor growth delay. The prescribed homogeneous dose of 4 Gy was precisely delivered at the laser-driven source.
The laser-based proton irradiation platform at the Draco PW facility enables systematic radiobiological studies within an unprecedented range of beam parameters and demonstrate a solution for minimally invasive volumetric dosimetry at ultra-high dose rates.
Florian-Emanuel Brack, Florian Kroll, Lennart Gaus, Constantin Bernert, Elke Beyreuther, Thomas Cowan, Leonhard Karsch, Stephan Kraft, Elisabeth Lessmann, Josefine Metzkes-Ng, Jörg Pawelke, Martin Rehwald, Marvin Reimold, Hans-Peter Schlenvoigt, Ulrich Schramm, Manfred Sobiella, Marvin Umlandt, Tim Ziegler, Karl Zeil
Laser-driven proton pulse provide unique properties in terms of pulse structure (ns) and instantaneous dose rate (10^9 Gy/s) but - inherently broadband and highly divergent - pose a challenge to established beamline concepts on the path to application-adapted irradiation field formation, particularly for three-dimensional cases. We present the successful implementation and characterisation of a highly efficient and tuneable dual pulsed solenoid beamline at the Draco PW facility[1] to generate volumetric dose distribution tailored to specific applications[2].
The vast experimental scope and already successfully performed studies range from systematic volumetric in-vivo tumour irradiations in a dedicated mouse model (with a stable mean dose delivery of ±10 % and a spatial dose homogeneity of ±5 % over a cylindrical volume of 5 mm diameter and height) to high-dose-rate irradiations in the FLASH regime (using proton peak dose rates of up to 10^9 Gy/s with about 20 Gy/shot homogeneously over a cylindrical sample volume of 4.5 mm diameter and 3 mm height) as well as particle diagnostics commissioning (with a multitude of spatial and spectral dose distributions).
The beamline setup is complemented by a complex beam monitoring and dosimetry detector suite adapted to the ultra-high dose rate pulses and is in its unique synergy and redundancy capable of %-level precision dose delivery to samples as required for systematic irradiation studies. In addition to established radiochromic film dosimetry, the detector suite includes saturation-corrected (transmission) ionisation chambers [3] as well as screen and bulk scintillator setups, partly with tomographic reconstruction capabilities for 3D dose distribution retrieval. Moreover, non-invasive, single-shot-capable online time-of-flight-based spectral characterisation of filtered proton pulses has proven a powerful tool for beam monitoring as well as dosimetric purposes.
In this presentation the complex and versatile dose delivery system of laser-driven protons at the Draco PW using pulsed solenoids will be discussed. Its characterisation, technological development and improvement as well as the dosimetry suite as a vital part of the precise dose delivery will be addressed, while the presentation by U. Schramm covers recent experimental activities in detail.
[1] T. Ziegler, et al., Proton beam quality enhancement by spectral phase control of a PW-class laser system, https://arxiv.org/abs/2007.11499 (2020)
[2] Brack, et al., Spectral and spatial shaping of laser-driven proton beams using a pulsed high-field magnet beamline, SciRep, 10:9118, (2020)
[3] Gotz M, et al., A new model for volume recombination in plane‐parallel chambers in pulsed fields of high dose‐per‐pulse. Phys Med Biol., 62: 8634, (2017)
After the rediscovery of the normal tissue sparing effect of high dose rate radiation, i.e. the so-called FLASH effect, by Favaudon et al. in 2014, research activities on this topic have been revived and are flourishing ever since. Yet, the exact biological mechanism as well as the required boundary conditions and radiation qualities to reach said sparing remain mostly unclear.
We present a laser-based irradiation platform at the Draco PW facility that enables systematic studies into the FLASH regime using proton peak dose rates of up to 10^9 Gy/s. Besides the PW class laser acceleration source, a key component is a pulsed high-field beamline to transport and shape the laser driven proton bunches spectrally and spatially in order to generate homogeneous dose distributions tailored to match the irradiation sample.
Making use of the diverse capabilities of the laser driven irradiation platform a pilot experiment of highest complexity has been conducted – a systematic in-vivo tumor irradiation in a specifically developed mouse model.
A plethora of online particle diagnostics, including Time-of-Flight, bulk scintillators and screens as well as ionization chambers, in conjunction with diagnostics for retrospective absolute dosimetry (radiochromic films) allowed for an unprecedented level of precision in mean dose delivery (±10 %) and dose homogeneity (±5 %) for the challenging beam qualities of a laser accelerator. The tailored detector suite is complemented by predictive simulations.
The talk addresses how our interdisciplinary team overcame all hurdles from animal model development, over enhancing the laser and laser acceleration stability, to dose delivery and online dose monitoring. Results on radiation induced tumor growth delay by laser driven as well as conventionally accelerated proton beams are critically discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.