Existing transceiver technology inside data centers will soon reach its limits due to the enormous traffic growth rates driven by new, bandwidth-hungry applications. Efforts to develop the next generation of 800Gbps and 1.6Tbps transceivers for intra-DC optical interconnects have already kicked-off to address the demands in traffic, the exhaustion of the ports at the digital switches and the power consumption limitations inherent to the use of many lower capacity modules. The new generation of optical modules must also provide Terabit capacities at low cost, necessitating the use of high-volume manufacturing processes. TERIPHIC is an EU funded R and D project that aims at developing transceiver modules with up to 1.6 Tbps capacity over 16 lanes in duplex fiber and cost less than 1 € per Gbps for distances up to 2 km, utilizing PAM-4 modulation for 100Gbps per lane and high-volume production compatible transceiver designs. At the component level, TERIPHIC will rely on arrays of high-speed electronics, InP Externally Modulated Lasers (EMLs) and InP photodetectors, and at the integration level it will rely on a polymer photonic platform as a host motherboard, leveraging its flexibility and powerful toolbox. A summary of the progress on the TERIPHIC transceiver modules concept, both at the component level and integration level is presented in this paper.
Highly complex optical fiber networks are the physical backbone of the internet today. For about two decades, the amount of data transferred through the optical networks keeps rising with no end being in sight. To fully use the capacity of the available optical mesh networks, more and more complex optoelectronic devices like Optical Cross-Connects, Wavelength Selective Switches and highly integrated Transceivers are being established. State of the art devices, e.g. WSS (Wavelength Selective Switch) can have 20 or more optical components, which is challenging and time consuming for conventional alignment routines. While these alignment routines are based on a stepwise alignment of single optical components, we propose a novel approach by simultaneously aligning pre-analyzed components and subgroups. The alignment strategy follows the optical functionality of the components being aligned: Prior to the assembly the module and each component once is being examined regarding their function and influence on the optical properties of the module being assembled. Functional sub-groups of components are investigated in the same manner. With this knowledge of each component’s influence on the optical properties of the module, it is possible to perform the simultaneous alignment with different alignment goals. Usually, it is desirable to minimize losses, but in some cases, the wavelength-dependent loss or the polarization-dependent loss can be of greater interest. In optical devices with dispersive elements like gratings and prisms, this approach can be applied to directly tailor the wavelength range or the wavelength resolution to the customer needs, while other properties are kept constant. In general, this approach allows adjusting optical properties independently from each other and can drastically reduce assembly times.
Volume holographic gratings have recently attracted interest as wavelength-selective devices, for applications
such as wavelength stabilizers for laser diode sources. These thick gratings are usually produced using various
photosensitive materials like photo-thermo-refractive glass and specially prepared polymers. These materials
often require two or more process steps for production of volume holographic gratings. In this study several
copolymers with MethylMethAcrylate as base material are compared. Unlike commercially available PMMA,
the polymers have a glass transition temperature up to 155 °C, which enables the use on higher laser powers.
The refractive index of the polymer is modified using 325-nm-radiation. The polymers were not sensitized by
peroxidation prior to irradiation, and after the irradiation process, no development was needed. The gratings
were recorded with both a Lloyd mirror setup and the well-known phase mask method. The gratings produced
have a calculated refractive index variation in the range of 10-5. The reflection characteristics were measured
with a modified Michelson interferometer and a tunable laser source. Volume holographic gratings with extremely
narrow bandwidth and angular selectivity can be produced on some of the polymers. The production cost of
the gratings is low and they can be used for multiple applications such as wavelength tuning and wavelength
selection of diode lasers at high power levels.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.