Quantized nanolaminates (QNL) are a material system that was developed, produced and characterized by the LZH in 2016 as an alternative optical material. The idea behind it is that, like a normal mixed material, QNLs have a refractive index that is determined by the ratio of the two materials used. However, the electron mobility is severely restricted by the very thin high refractive index material. This results in a higher band gap and a lower absorption edge of the system. Their properties have been demonstrated on ALD and IBS systems. But the complex and slow coating processes meant that only a few iterations could be produced. We have now developed a process on a magnetron sputtering system with a rotating substrate table that makes it possible to produce QNL layers of SiO2 and Ta2O5 at a very high rate of up to 0.8nm/s. This makes it possible to use these nanolaminates economically as a stand-alone material, even in thick and high layer count designs. Because of the process we were able to produce a variety of QNL with different layer thickness and ratio combinations and perform a variety of measurements such as atomic force microscopy (AFM), total scattering (TIS), transmission electron microscopy (TEM) and Laser induced damage threshold (fs-LIDT) to determine their properties. We were able to use the knowledge gained to coat more complex multilayer systems in a range that would otherwise not have been possible with normal Ta2O5-SiO2 coating systems.
KEYWORDS: Coating, Error analysis, Camera shutters, Optical simulations, Neodymium, Global system for mobile communications, Data processing, Tolerancing, Signal processing, Reflectivity
Various types of optical monitoring systems are established in industry. They range from single wavelength, over monochromatic to broadband monitoring to calculate a monitoring signal, which allows to terminate each layer in a filter at the required thickness. State of the art monitoring systems offer the capability of monochromatic and broadband monitoring in a single device. With these technologies available, the question arises how to combine these monitoring strategies for a specific application in a way, which leads to accurate coating results with the least sensitivity to production errors and thus to the highest yield. To answer this question without the need to perform costly coating runs, we developed a software tool, which mimics all the monitoring features of Evatec’s GSM optical monitoring system. Additionally, the software is able to disturb the simulated ideal monitoring signal with errors such as detector noise, drifts, deviations in shutter delay times, etc. The values of these disturbances are specific to the deposition tool. They were determined based on the broadband spectra of actual coating runs. By starting a virtual coating run with defined disturbances, the thickness deviations expected with a selected strategy can be assessed and the development of thickness deviations during the run, i.e. error compensation and error accumulation can be simulated. Within the software, parameters for the termination of each layer can be varied individually and the effect on the coating result can be observed. In order to demonstrate the capability of this tool, a specific coating design was then selected. For this design various monitoring strategies were tested, broadband strategies with different wavelength ranges, monochromatic strategies varying wavelength assignment per layer but also mixed strategies of broadband and monochromatic monitoring. The most stable monitoring strategy resulting from these simulations was coated as well as some of the less promising candidates and their results were compared.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.