We report the effective suppression of stimulated Raman scattering (SRS) in a high-power fiber laser oscillator with 15 m long delivery fibers by the insertion of a single chirped and tilted fiber Bragg grating (CTFBG). Inscribed in 20/400 μm fiber, the single CTFBG has been carefully designed and fabricated with a filter bandwidth of 22.8 nm to match the Raman gain spectrum. A maximum suppression ratio over 30 dB is achieved when the oscillator operates at 2.7 kW, with beam quality factor M2 of ~1.4. Moreover, the signal insertion loss is measured to be around 0.2 dB and the maximum temperature is about 41.6 °C at a room temperature of 25 °C. By improving the performance of CTFBG, a further power scaling and longer delivery distance of high-power fiber lasers could be achieved.
In this paper, a preliminary demonstration of all-fiber coherent beam combining (CBC) with active polarization-and- phase control is proposed. The CBC system was composed of two laser channels combined with a fiber coupler. One channel utilized non-polarization-maintained (non-PM) fiber, and the state of polarization of laser was controlled by using a dynamic polarization controller (DPC). The other channel adopted polarization-maintained (PM) fiber, and the phase of laser was controlled by using a phase modulator. In the central controller, hill-climbing algorithm and stochastic parallel gradient descent (SPGD) algorithm were applied for phase-locking and polarization-locking respectively. With this system, 82.3% of combining efficiency was demonstrated, the extinction ratio of the combined laser was 97.3% and the phase-locking efficiency reached 96.05%.
In this paper, we report a high-robustness good-beam-quality 3×1 signal combiner that performs very well under high power. We use three 3.5kW fiber lasers to inject into the three ports of the combiner to achieve a high power output of 10.4kW, and the power transmission efficiency is 98.2%.The output beam quality M24σ and β factor are tested when the power reached the highest, which are (5.465,5.2) and 2.69 respectively. The temperature rising rate of housing is 0.9 °C/kW, is effectively controlled by water cooling package of the combiner. This 3×1 signal combiner has been used in 10-kW fiber laser product and it works well in harsh environment, demonstrating high robustness against unconventional conditions.
Thermal effects are critical limit relevant to the power scaling of single crystalline fiber laser. In this paper, thermal effects in thin-rod single crystalline fiber are numerically researched. The simulation results show that thermal effects can be effectively reduced by enhancing the convective coefficient and decreasing the diameter of single crystalline fiber. For the most thin-rod single crystalline fibers utilized with diameter of 1 mm and length of 40 mm, the maximum heat load is only about 107 W due to the thermal rupture effect, which limits the laser output power to ~1 kW levels. The numerical results provide references for the developments and designing of thin-rod SCF laser
We report a lossless all-fiber 7x1 signal combiner, which can be used to combine more than 10 kW laser power. The measured power transmission efficiency is larger than 98.1% and power handle capability is more than 2 kilowatt (kW) for each port. When the combiner is put on a 20°C water cool plate, the average temperature rise is less than 3°C/kW. Due to the nearly lossless efficiency and good thermal performance, we can conclude that this combiner is capable of more than 10 kW power.
The design of annular doping region located in the cladding can reduce signal overlap with the doped region in order to reduce saturation and minimize gain compression, which has important applications in EDFAs. Here, we present the design and power scaling characterization of a cladding-pumped amplifier with ytterbium dopant located in an annular region near the ultra low NA core in the cladding, which is found to be a promising way to achieve multi-kilowatt single mode fiber lasers. The ultra low NA ensures that the fiber amplifiers operate in single mode state, which results to that the fiber amplifiers are free of the limitation of the transverse mode instability, and that the mode field of the signal laser extends into the cladding to extract gain amplification. The annular ytterbium-doped region located in the cladding can overcome the contradiction between high doping concentration and ultra-low NA design, which can simultaneously obtain high pump absorption with ultra low NA. The size of annular ytterbium-doped region under different core NA has been studied for various core sizes, which shows that the optimal size of annular ytterbium-doped region is related to the core NA and the core size. Detail analysis of high power amplification of cladding-ring-up-doped ultra low NA single mode fiber amplifier has been presented, which includes various nonlinear effects and thermal effects. It shows that, due to the specific design, the single mode characterization of the fiber is less influenced by the detrimental thermo-optic effect, which means that the cladding-annular-doped ultra-low NA fiber has high mode instability threshold than the ultra-low NA fiber with the core being fully uniformly doped. The cladding-pumped fiber amplifiers based on cladding-annular-doped ultra low NA fiber has the capability to achieve >10kW single mode fiber lasers.
A high power 1030 nm ytterbium-doped polarization maintained fiber laser with optimized parameters is presented in this paper. The master oscillator power amplifier system with counter-pumped amplifier is established. The output power is 900 W, along with a light-to-light efficiency of 64.2%. The amplified spontaneous emission suppression ratio of spectrum reaches to 40 dB with 3 dB linewidth of 0.14 nm. The polarization extinction ratio is 12 dB, and the beam quality factor is M2x=1.07, M2y=1.12. To the best of our knowledge, this is the first demonstration of 1030 nm high power fiber laser with narrow linewidth, near linear polarization, and neardiffraction-limited beam quality
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.