KEYWORDS: Space telescopes, Telescopes, James Webb Space Telescope, Mirrors, Optical instrument design, Astronomy, Space operations, Cryogenics, Aerospace engineering, Cryocoolers
The Origins Space Telescope will trace the history of our origins from the time dust and heavy elements permanently altered the cosmic landscape to present-day life. How did galaxies evolve from the earliest galactic systems to those found in the universe today? How do habitable planets form? How common are life-bearing worlds? We describe how Origins was designed to answer these alluring questions. We discuss the key decisions taken by the Origins mission concept study team, the rationale for those choices, and how they led through an exploratory design process to the Origins baseline mission concept. To understand the concept solution space, we studied two distinct mission concepts and descoped the second concept, aiming to maximize science per dollar and hit a self-imposed cost target. We report on the study approach and describe the concept evolution. The resulting baseline design includes a 5.9-m diameter telescope cryocooled to 4.5 K and equipped with three scientific instruments. The chosen architecture is similar to that of the Spitzer Space Telescope and requires very few deployments after launch. The cryo-thermal system design leverages James Webb Space Telescope technology and experience.
The Origins Space Telescope will trace the history of our origins from the time dust and heavy elements permanently altered the cosmic landscape to present-day life. How did galaxies evolve from the earliest galactic systems to those found in the Universe today? How do habitable planets form? How common are life-bearing worlds? To answer these alluring questions, Origins will operate at mid- and far-infrared (IR) wavelengths and offer powerful spectroscopic instruments and sensitivity three orders of magnitude better than that of the Herschel Space Observatory, the largest telescope flown in space to date. We describe the baseline concept for Origins recommended to the 2020 US Decadal Survey in Astronomy and Astrophysics. The baseline design includes a 5.9-m diameter telescope cryocooled to 4.5 K and equipped with three scientific instruments. A mid-infrared instrument (Mid-Infrared Spectrometer and Camera Transit spectrometer) will measure the spectra of transiting exoplanets in the 2.8 to 20 μm wavelength range and offer unprecedented spectrophotometric precision, enabling definitive exoplanet biosignature detections. The far-IR imager polarimeter will be able to survey thousands of square degrees with broadband imaging at 50 and 250 μm. The Origins Survey Spectrometer will cover wavelengths from 25 to 588 μm, making wide-area and deep spectroscopic surveys with spectral resolving power R ∼ 300, and pointed observations at R ∼ 40,000 and 300,000 with selectable instrument modes. Origins was designed to minimize complexity. The architecture is similar to that of the Spitzer Space Telescope and requires very few deployments after launch, while the cryothermal system design leverages James Webb Space Telescope technology and experience. A combination of current-state-of-the-art cryocoolers and next-generation detector technology will enable Origins’ natural background-limited sensitivity.
The Origins Space Telescope will trace the history of our origins from the time dust and heavy elements permanently altered the cosmic landscape to present-day life. How did galaxies evolve from the earliest galactic systems to those found in the universe today? How do habitable planets form? How common are life-bearing worlds? To answer these alluring questions, Origins will operate at mid- and far-infrared wavelengths and offer powerful spectroscopic instruments and sensitivity three orders of magnitude better than that of Herschel, the largest telescope flown in space to date. After a 3 ½ year study, the Origins Science and Technology Definition Team will recommend to the Decadal Survey a concept for Origins with a 5.9-m diameter telescope cryocooled to 4.5 K and equipped with three scientific instruments. A mid-infrared instrument (MISC-T) will measure the spectra of transiting exoplanets in the 2.8 – 20 μm wavelength range and offer unprecedented sensitivity, enabling definitive biosignature detections. The Far-IR Imager Polarimeter (FIP) will be able to survey thousands of square degrees with broadband imaging at 50 and 250 μm. The Origins Survey Spectrometer (OSS) will cover wavelengths from 25 – 588 μm, make wide-area and deep spectroscopic surveys with spectral resolving power R ~ 300, and pointed observations at R ~ 40,000 and 300,000 with selectable instrument modes. Origins was designed to minimize complexity. The telescope has a Spitzer-like architecture and requires very few deployments after launch. The cryo-thermal system design leverages JWST technology and experience. A combination of current-state-of-the-art cryocoolers and next-generation detector technology will enable Origins’ natural backgroundlimited sensitivity.
The Origins Space Telescope (OST) will trace the history of our origins from the time dust and heavy elements permanently altered the cosmic landscape to present-day life. How did the universe evolve in response to its changing ingredients? How common are life-bearing planets? To accomplish its scientific objectives, OST will operate at mid- and far-infrared wavelengths and offer superlative sensitivity and new spectroscopic capabilities. The OST study team will present a scientifically compelling, executable mission concept to the 2020 Decadal Survey in Astrophysics. To understand the concept solution space, our team studied two alternative mission concepts. We report on the study approach and describe both of these concepts, give the rationale for major design decisions, and briefly describe the mission-enabling technology.
Optical interferometry is a cost-effective means to extend the resolving power of astronomical instruments. Typically, the light from separate small and movable telescopes is brought through vacuum pipes to a central beam combiner. We are developing a new generation of AO systems to enhance the performance of interferometers in which the vacuum lines are replaced with optical fibers. The AO, included on each of the telescopes, concentrates light on the fiber inputs to achieve the greatest optical throughput. We describe the design approach to the AO systems, how their requirements differ from those of a traditional system, and how the addition of AO enables further enhancements to the design of optical interferometers.
The Pick Off Mirror (POM) is the business end of the Focus and Alignment Mechanism (FAM) of NIRCam. The POM
harnesses the light delivered by the telescope and steers it into the Near Infrared Camera. At strategic points during the
build and test of the Pick Off Mirror and its mechanism (the FAM) the surface figure error (SFE) of the mirror was
monitored. This metric was used to track the health of the mirror throughout this testing regime. For example, the team
ran an SFE test before and after Vibration testing the FAM. In this paper, we will provide an overview of the testing
regime and the results of these periodic SFE tests. These results lead to the qualification of the POM and FAM designs
for flight on the James Webb Space Telescope.
The NIRCam instrument on the James Webb Space Telescope (JWST) will provide a coronagraphic
imaging capability to search for extrasolar planets in the 2 - 5 microns wavelength range. This capability is
realized by a set of Lyot pupil stops with patterns matching the occulting mask located in the JWST
intermediate focal plane in the NIRCam optical system. The complex patterns with transparent apertures
are made by photolithographic process using a metal coating in the opaque region. The optical density
needs to be high for the opaque region, and transmission needs to be high at the aperture. In addition, the
Lyot stop needs to operate under cryogenic conditions. We will report on the Lyot stop design, fabrication
and testing in this paper.
The Near Infrared Camera (NIRCam) instrument for NASA's James Webb Space Telescope (JWST) has an optical
prescription which employs four triplet lens cells. The instrument will operate at 35K after experiencing launch loads at
approximately 295K and the optic mounts must accommodate all associated thermal and mechanical stresses, plus
maintain an exceptional wavefront during operation.
Lockheed Martin Space Systems Company (LMSSC) was tasked to design and qualify the bonded cryogenic lens
assemblies for room temperature launch, cryogenic operation, and thermal survival (25K) environments. The triplet lens
cell designs incorporated coefficient of thermal expansion (CTE) matched bond pad-to-optic interfaces, in concert with
flexures to minimize bond line stress and induced optical distortion. A companion finite element study determined the
bonded system's sensitivity to bond line thickness, adhesive modulus, and adhesive CTE. The design team used those
results to tailor the bond line parameters, minimizing stress transmitted into the optic.
The challenge for the Margin of Safety (MOS) team was to design and execute a test that verified all bond pad/adhesive/
optic substrate combinations had the required safety factor to generate confidence in a very low probability optic bond
failure during the warm launch and cryogenic survival conditions. Because the survival temperature was specified to be
25K, merely dropping the test temperature to verify margin was not possible. A shear/moment loading device was
conceived that simultaneously loaded the test coupons at 25K to verify margin.
This paper covers the design/fab/SEM measurement/thermal conditioning of the MOS test articles, the thermal/structural
analysis, the test apparatus, and the test execution/results.
High spectral resolution Fourier transform imaging spectroscopy has been demonstrated at the Lockheed Martin
Advanced Technology Center. A testbed was built using a Michelson interferometer with a two-stage end-mirror control
system. Homodyne laser metrology was used to sense relative tip, tilt and piston in the interferometer, and a 3-degree of
freedom fast steering mirror in conjunction with a linear actuator stage provided sub-nanometer actuation control over
20 millimeters of piston range. The range of piston over which signal was present allowed for spectral resolution at the
nanometer level in the visible / near infrared (VNIR) band for every pixel in the reconstructed image.
Upconversion fiber lasers appear as promising candidates of infrared diode pumpable sources of blue and green radiation at moderate output power levels ( ~50 - 200 mW). Despite significant technological advances made by direct doubled-diode sources and doubled diode- pumped solid state lasers, recent improvements in the reliability and cost of fluoride fibers have made upconversion fiber lasers competitive as compact blue and green sources, particularly with regard to choices of specific wavelengths and power levels needed for numerous applications such as full color displays, high performance imaging and printing (e.g. for digital radiography), high capacity optical storage, satellite-to-satellite communications, semiconductor wafer inspection systems, and biotechnology (specifically for flow cytometry and phase fluorometry systems). In this paper, we will review the work on the development of blue and green upconversion fiber lasers that is being pursued at the University of New Mexico.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.