This will count as one of your downloads.
You will have access to both the presentation and article (if available).
To overcome these limitations, we started in 2012 to design a facility aimed at generating a broad (170 x 60 mm2), uniform and low-divergent (1.5 arcsec HEW) X-ray beam within a small lab (∼ 9 x 18 m2), to characterize the ATHENA MM. BEaTriX (the Beam Expander Testing X-ray facility) makes use of an X-ray microfocus source, a paraboloidal mirror, a crystal monochromation system, and an asymmetrically-cut diffracting crystal for the beam expansion. These optical components, in addition to a modular low-vacuum level (10-3 mbar), enable to match the ATHENA SPO acceptance requirements.
The realization of this facility at INAF-OAB in Merate (Italy) is now on going. Once completed, BEaTriX can be used to test the Silicon Pore Optics modules of the ATHENA X-ray observatory, as well as other optics, like the ones of the Arcus mission. In this paper we report the advancement status of the facility.
As an example, we describe the results obtained measuring the primary mirror segments of the Cherenkov prototypal telescope manufactured by the Italian National Institute for Astrophysics in the context of the ASTRI Project. This specific case is challenging because the segmentation of the polynomial primary mirror lead to individual mirrors with deviations from the spherical optical design up to a few millimeters.
View contact details
No SPIE Account? Create one